FGF-regulated Etv genes are essential for repressing Shh expression in mouse limb buds.

نویسندگان

  • Zhen Zhang
  • Jamie M Verheyden
  • John A Hassell
  • Xin Sun
چکیده

Anterior-posterior (A-P) patterning of the vertebrate limb is controlled by sonic hedgehog (SHH) signaling, and the precise restriction of Shh expression to the posterior limb bud is essential for its polarizing effect. Fibroblast growth factor (FGF) signaling, a key control of proximal-distal (P-D) limb outgrowth, is known to promote Shh expression in the posterior limb bud. Here, we show that conditional knockout of the FGF-activated transcription factor genes Etv4 and Etv5 in mouse led to ectopic Shh expression in the anterior limb bud and a preaxial polydactyly (PPD) skeletal phenotype. These unexpected results suggest that ETV4 and ETV5 act downstream of FGF signaling to inhibit Shh expression in the anterior limb bud. This finding elucidates a novel aspect of the mechanism coordinating limb development along the A-P and P-D axes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preaxial polydactyly: interactions among ETV, TWIST1 and HAND2 control anterior-posterior patterning of the limb.

Preaxial polydactyly (PPD) is a common limb-associated birth defect characterized by extra digit(s) in the anterior autopod. It often results from ectopic sonic hedgehog (Shh) expression in the anterior limb bud. Although several transcription factors are known to restrict Shh expression to the posterior limb bud, how they function together remains unclear. Here we provide evidence from mouse c...

متن کامل

Fgf-dependent Etv4/5 activity is required for posterior restriction of Sonic Hedgehog and promoting outgrowth of the vertebrate limb.

Crosstalk between the fibroblast growth factor (FGF) and Sonic Hedgehog (Shh) pathways is critical for proper patterning and growth of the developing limb bud. Here, we show that FGF-dependent activation of the ETS transcription factors Etv4 and Etv5 contributes to proximal-distal limb outgrowth. Surprisingly, blockage of Etv activity in early distal mesenchyme also resulted in ectopic, anterio...

متن کامل

Mouse Twist is required for fibroblast growth factor-mediated epithelial–mesenchymal signalling and cell survival during limb morphogenesis

Mouse Twist is essential for cranial neural tube, limb and somite development. [Genes Dev. 9 (1995) 686]. To identify the molecular defects disrupting limb morphogenesis, we have analysed expression of mesenchymal transcription factors involved in patterning and the cell-cell signalling cascades controlling limb bud development. These studies establish that Twist is essential for maintenance an...

متن کامل

Evidence for genetic control of Sonic hedgehog by Gli3 in mouse limb development

Sonic hedgehog (Shh) expression in the developing limb is associated with the zone of polarising activity (ZPA), and both are restricted to the posterior part of the limb bud. We show that the expression patterns of Shh and Gli3, a member of the Gli-family believed to function in transcriptional control, appear to be mutually exclusive in limb buds of mouse embryos. In the polydactyly mouse mut...

متن کامل

Differential regulation of gene expression in the digit forming area of the mouse limb bud by SHH and gremlin 1/FGF-mediated epithelial-mesenchymal signalling.

Spatially and temporally coordinated changes in gene expression are crucial to orderly progression of embryogenesis. We combine mouse genetics with experimental manipulation of signalling to analyze the kinetics by which the SHH morphogen and the BMP antagonist gremlin 1 (GREM1) control gene expression in the digit-forming mesenchyme of mouse limb buds. Although most mesenchymal cells respond r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental cell

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 2009